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Abstract. Searching literature for a systematic review begins with a
manually constructed search strategy by an expert information special-
ist. The typical process of constructing search strategies is often undoc-
umented, ad-hoc, and subject to individual expertise, which may intro-
duce bias in the systematic review. A new method for objectively deriving
search strategies has arisen from information specialists attempting to
address these shortcomings. However, this proposed method still presents
a number of manual, ad-hoc interventions, and trial-and-error processes,
potentially still introducing bias into systematic reviews. Moreover, this
method has not been rigorously evaluated on a large set of systematic re-
view cases, thus its generalisability is unknown. In this work, we present a
computational adaptation of this proposed objective method. Our adap-
tation removes the human-in-the-loop processes involved in the initial
steps of creating a search strategy for a systematic review; reducing bias
due to human factors and increasing the objectivity of the originally pro-
posed method. Our proposed computational adaptation further enables a
formal and rigorous evaluation over a large set of systematic reviews. We
find that our computational adaptation of the original objective method
provides an effective starting point for information specialists to continue
refining. We also identify a number of avenues for extending and improv-
ing our adaptation to further promote supporting information specialists.
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1 Introduction

The goal of a systematic review is to synthesise all relevant literature for a highly
focused research question. Systematic reviews are used extensively in evidence
based medicine (this is the domain we consider in the rest of the paper), both for
healthcare decision making and institutional policy mandates concerning health
topics. While systematic reviews strive to be methodical and comprehensive,
there are still a number of processes associated with them which introduce bias
and subjectivity. Arguably, the process which contributes the most bias is the
construction of search strategies. The main element of a search strategy is a
complex Boolean query. This is issued to one or more publication databases
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(e.g., PubMed, EMBASE). Retrieved studies are first screened (i.e., the title
and abstracts are assessed) for potential inclusion in the review. Then, the full-
text of screened studies deemed potentially relevant to the review are assessed
to determine if they should be synthesised in the final review [5].

The most common method for developing a search strategy is the concep-
tual method [2,12] (although other methods have been investigated that do not
produce a Boolean query [7,6]). Here, the query is formulated by dividing the
research question of a systematic review into multiple high-level concepts, and
then choosing suitable synonyms for each concept. Query formulation is typically
performed by trained information specialists (e.g., librarians), who use domain
expertise and intuition to decide, for example, what keywords to add to a query
and where they should be added, what kind of field restrictions should be ap-
plied, and when to stop formulating. Often, information specialists also have
access to a handful of studies (seeds) that the researchers are certain will be
included in the synthesis of the review. In the conceptual approach, information
specialists use the few seed studies to repeatedly gauge the effectiveness of the
queries they formulate in an ad-hoc manner.

An objective [20,4] method for deriving systematic review search strategies
has recently been proposed which aims to avoid the unrigorous, subjective as-
pects of the conceptual approach. In this method, a small set of ‘gold standard’
studies are first identified — these serve to (semi-)automatically identify key-
words to add to the query, and to validate its effectiveness. The gold standard
set is akin to the seed studies considered in the conceptual approach, but gen-
erally much larger (conceptual: a handful; objective: in the order of 10s-100s).
Despite the name, this method is still ad-hoc and involves manual trial-and-error
with respect to choosing a subset of the identified keywords to add to the query,
and where to place keywords in the query. In addition, this method has only been
evaluated on a handful of use-case systematic reviews, thus its effectiveness and
generalisability beyond these cases is as yet unknown.

In this paper, we propose a computational adaptation of the objective method-
ology proposed by Hausner et al.[4] for objectively deriving medical systematic
review search strategies. Our approach does not require manual human involve-
ment, nor trial-and-error procedures, and, in fact, is capable of generating a
query automatically, given a set of relevant studies as input. Furthermore, we
evaluate this method on a large set of 40 systematic reviews from a collection
used for the evaluation of automation methods in this context [6] and further
replicate a small study by Hausner et al. [4]. We also consider the cost factors
of systematic review development in our evaluation. The primary goal of this
research is to develop a more transparent and less subjective method to search
strategy development by computationally adapting and extending the current
objective approach. Achieving total recall of the relevant literature for a study
is important. However, the effectiveness of systematic reviews is often hampered
by the fact that they are resource-intensive and often become out-of-date at the
time of publication [21]: it takes on average 2 years and AUD$350K to create
a systematic review [13,9] and currently only 36% of Cochrane SRs are deemed
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Fig. 1: The process used for deriving queries using the objective method. The
dashed line signifies an extension of the objective method not in the originally
proposed method. The symbol refers to the processes in the objective method
which currently require manual intervention. Automating these manual processes
is the main focus of this work.

up-to-date. The largest time and monetary cost involved in systematic review
creation is the screening phase, which is directly influenced by the number of
studies retrieved by the search strategy. Furthermore, the exponentially grow-
ing body of published research casts doubts on how effective the reviews are in
identifying all relevant research; potentially introducing bias.

With the method presented in this research, our overarching goal is to auto-
matically and objectively derive suitable queries which can be used as a starting
point for query formulation, to derive more effective search strategies (higher
precision while maintaining recall) than manually derived queries. The method
of this study is expected not to replace information specialists, but to provide
support by reducing bias and subjectivity in the search development process.

2 Computational, Objective Method

Our method for automatically and objectively deriving search strategies is an
adaptation of the method originally proposed by Hausner et al. [4]. A high-
level process overview of the objective method is shown in Figure 1. This figure
highlights manual aspects of the original method which we computationalise,
and extensions to the original method our method makes, which seek to further
reduce bias. The following two sections first describe the original method, and
then the specific computational adaptations and extensions we make.

2.1 The Objective Method

The objective method [4] starts by identifying studies either by scanning the
references of similar, already published systematic reviews, or by issuing broad
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queries to medical databases (e.g., PubMed, MEDLINE) and screening a sub-
set for identifying gold-standard references. These references form the ‘test’ set,
which is divided into a development set ( 2

3 ) and a validation set ( 1
3 ). The title

and abstract of each of the references in the test set is then analysed by ranking
each term by the frequency it appears in each of the references (i.e., document
frequency – DF). Next, these terms are filtered to include the top 20% of terms
according to DF. At the same time, a population set (i.e., a background col-
lection) of 10,000 studies is identified by issuing an empty search to PubMed
and restricting results to the last 12 months (the default ranking of PubMed
is by descending publication date). The previously filtered terms are filtered
yet again to include the bottom 2% of terms according to DF. Finally, the 20
most frequent MeSH terms are identified from studies in the development set. A
Boolean query is then developed by dividing terms into three categories (which
form three clauses, linked with the Boolean AND operator): (1) terms relating
to health conditions, (2) terms relating to a treatment, and (3) terms relating
to the types of study design to be included. Through a time consuming process
of trial-and-error, filtered terms and MeSH terms are then added to one of the
three clauses of the query depending on the category of the term. Terms inside
a category are combined using an OR operator, and the three categories are then
combined with an AND operator. The effectiveness of the query is then compared
to the validation set.

2.2 Automating the Objective Method

We propose a number of computational modifications to this method which seek
to further remove human subjectivity from the process. We also improve the
process by which evaluation of the resulting queries is undertaken in a number
of ways. In our modified methodology, we begin with the same test set, however
we split into ( 2

4 ) development, (1
4 ) validation, and ( 1

4 ) unseen. The unseen set
is used to approximate how the query will perform on studies which are not
assessed (i.e., a study which is relevant, but which may never be retrieved by
the query, and therefore never screened for potential relevance). It also allows
us to develop the query on the development set, tune parameters values on the
validation set, and study their effectiveness on the unseen set. We then follow
the same method of filtering terms using the development set and the population
set, as well as identifying MeSH terms to use. To automatically assign a category
for a term, the semantic type of a term is used. The semantic type is obtained
automatically by mapping terms to UMLS concepts via MetaMap [1] (version
2018 with options set to their default values and using UMLS2018AA). If a term
does not map to a concept in MetaMap, it is discarded. Once a semantic type is
obtained for a term, it is automatically categorised in a two fold process: (i) if the
semantic type is present in Table 1a, then the term is mapped accordingly [22],
(ii) if the semantic type is not present, then the semantic group of the semantic
type is used to broadly categorise the term according to Table 1b. Note that in
step (ii), some terms may be discarded due to the semantic group they belong
to, denoted by ‘None’ in the table. Following this process, the identified MeSH
terms are then added to one or more of the three categories according to the top-
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Uzuner et al. [22] Relationship Hausner et al. [4] Category

Test → Treatment
Treatment → Treatment
Diagnosis → Condition

(a) How a relationship as identified by Uzuner et al. [22] maps to a category.

Semantic
Group

Hausner et al. [4]
Category

ACTI → Treatment
ANAT → Condition
CHEM → Treatment
CONC → None
DEVI → Treatment
DISO → Condition
GENE → Condition
GEOG → Study Type
LIVB → Condition
OBJC → Treatment
OCCU → Condition
ORGA → Study Type
PHEN → Condition
PHYS → Condition
PROC → Treatment

(b) How a semantic
group maps to a cate-
gory.

MeSH top-level heading Hausner et al. [4]
Category

Anatomy → Condition
Organisms → Condition
Diseases → Condition
Chemicals and Drugs → Treatment
Analytical, Diagnostic and Therapeutic
Techniques, and Equipment

→ Treatment

Psychiatry and Psychology → Condition
Phenomena and Processes → Condition
Disciplines and Occupations → Condition
Anthropology, Education, Sociology, and
Social Phenomena

→ None

Technology, Industry, and Agriculture → None
Humanities → None
Information Science → Study Type
Named Groups → Condition
Health Care → None
Publication Characteristics → Study Type
Geographicals → Study Type

(c) How a top-level MeSH heading maps to a category.

tTable 1: Processes for mapping terms to a Hausner et al. [4] category in a query.

level MeSH parent in Table 1c. Once all of the identified terms are categorised,
the computational assembly of the Boolean query takes place.

We also take a computational approach to the assembly of the Boolean query.
A näıve approach could involve trying all combinations of terms in a category
with all combinations of all other terms in all other categories (similar to the
manual trial-and-error employed in the original method). The complexity of this
approach, however, presents itself as infeasible: O(n!3) (where n is the number
of terms for a given category, assuming all categories have the same number of
terms, in the worst case). Instead, we compute the maximum number of studies in
the development set retrievable using the filtered terms and MeSH terms by first
representing the set of relevant studies retrieved for each category as a binary
array (e.g., health conditions c=[1,1,1,1,1,1,1,1], treatments t=[0,1,1,1,1,1,1,1]
and study type s=[1,1,0,1,1,1,1,1]), where 1 indicates that the relevant study
referred by that position in the array is retrieved. Then we perform conjunc-
tion (bitwise AND) on the three binary arrays to obtain a new binary array (i.e.,
c∧t∧s = q =[0,1,0,1,1,1,1,1]) which represents the set of relevant studies in the
development set that can be retrieved by the query that includes all terms (i.e.
the maximal query). Note that when there are no terms present for a category4

then the category is removed from the conjunction which forms q. The logical
conjunction of the three vectors has the same effect as executing the query, thus

4 e.g., there are no terms that can be categorised into Study Type (s), but there are
terms categorised into Conditions (c) and Treatments (t).
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greatly increasing the number of comparisons that can be made (i.e, it reduces
computation time). Further note that it is not guaranteed that the set of cat-
egories which contain terms from the development set, when combined using a
Boolean AND operator, will retrieve all the relevant studies in the validation set
— this is true regardless of using our technique for speeding up query assem-
bly, or trying all combinations. Next, in an iterative manner, each term from
each category is temporarily removed and a new binary vector (vi) is computed,
containing the set of relevant studies in the development set retrieved without
that term. If q ∧ vi = q, that is, if the removal of the term has no effect on the
number of relevant studies in the development set retrieved by the rest of the
terms, then the removal of that term from the category is made permanent. In
other words, that term contributes nothing overall to the query (or its contri-
bution is redundant as its contributing studies are also retrieved by other query
terms) and is removed from its respective clause. Note that this technique could
also be used in an interactive system to highlight to a user those terms that do
not contribute to the set of retrieved documents, or alternatively for evaluating
existing search strategies. The iteration proceeds by considering one candidate
term for removal at a time; terms are ordered descending by the sum of the
components of their document vectors, i.e., their total document frequency, thus
the order of terms removed is deterministic. The complexity of this approach is
O(3n): each term in the query is required to be only tested once for inclusion in
the final query, rather than for all possible combinations. The resulting query is
guaranteed to retrieve the maximum number of relevant studies possible in the
development set (based on the terms which have been identified in the previous
process).

We further propose to tune the term cut-off thresholds parameters for the
filtering steps. Rather than fixing the thresholds at 20% for development and 2%
for population (as done by Hausner et al.[4]), we perform a grid search (indepen-
dently for each query) over combinations of thresholds to find the parameters
best suited (optimising for F1, F3, recall) for a particular query. We also apply
the same strategy to identify the number of MeSH terms to add to a query.
The development set is used to identify terms; then we evaluate queries on the
validation set to select the best combination of parameters. The query can then
be evaluated fairly on the unseen set.

3 Empirical Evaluation

We evaluate the computational method for objectively deriving systematic re-
view search strategies on the CLEF 2018 Technology Assisted Reviews (TAR)
collection [6]. This collection of diagnostic test accuracy systematic review pro-
tocols contains 75 topics (i.e., systematic reviews use-cases).5 Diagnostic test
accuracy reviews are highly specific and are considered one of the most difficult

5 The CLEF 2018 TAR collection is a superset of queries from the 2017 TAR collection.
The CLEF 2017 TAR collection was not used as the overlap of queries in the 2017
and 2018 collections for our purposes was the same, once we removed topics that
had less than 50 relevant studies.
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F0.5 F1 F3 NNR Precision Recall

Original 0.0078† 0.0123† 0.0558† 1040.03 0.0062† 0.9384

Original (Relaxed) 0.0015∗ 0.0024∗ 0.0115∗ 230824.58 0.0012∗ 0.9078
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u
to

m
a
te

d
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je
ct

iv
e

tu
n
ed

fo
r:

F1+MeSH 0.0056† 0.0086† 0.0340† 895.38 0.0046† 0.5329∗†

F1 0.0148† 0.0194† 0.0442† 2186.58 0.0129† 0.2418∗†

F3+MeSH 0.0060† 0.0094† 0.0384† 921.29 0.0049† 0.5095∗†

F3 0.0166† 0.0219† 0.0510† 1217.09 0.0146∗† 0.2672∗†

Recall+MeSH 0.0005∗† 0.0007∗† 0.0035∗† 84809.31∗ 0.0004∗† 0.9523

Recall 0.0002∗† 0.0004∗† 0.0017∗† 102020.38∗ 0.0002∗† 0.8561∗

Table 2: Evaluation results on unseen documents, with and without MeSH
terms applied to queries. Relaxed indicates original queries where MeSH explo-
sion is removed and phrases converted to Boolean OR clauses. Significant differ-
ences (paired two-tailed t-test p < 0.05) between original queries indicated by ?.
Significant differences between relaxed queries indicated by †. Highest values are
bolded. Original queries do not achieve 100% recall because (i) errors in report-
ing of queries [3,14], and (ii) all queries are issued to PubMed even if the original
query was reported as a MEDLINE query (i.e., translated automatically [17]).

types of systematic reviews to search literature for [11]. Each topic comprises
the title of the review, the Boolean query used to retrieve studies, and relevance
assessments for the studies retrieved by the query. To determine the effective-
ness of queries, we execute them in PubMed through the entrez API [16]. In
our experiments, the test set for each topic is derived from the studies labelled
relevant at an abstract level: these are studies that were retrieved by the Boolean
query of the original systematic review and were screened for inclusion. We set
the minimum size of the development set to 25, therefore excluding topics from
the collection where the number of studies labelled relevant was less than 50
(development = 2/4 of total size). This number was chosen as the size of the
development set in the study by Hausner et al. [4] was 25 (for a single topic).
For comparison, the development set in a study by Simon et al. [20] was 78
(single topic). After removing topics in this way, 40 topics remained (still con-
siderably larger than the previous studies), and the average number of relevant
studies per topic was 180.65 ± 157.8 (min: 52, max:604). When optimising the
threshold parameters, we performed a grid search over the values [0.05, 0.30] with
step 0.05 for the development and 0.001, 0.01, 0.02, 0.05, 0.10, 0.20 for the pop-
ulation sets. The number of MeSH terms to add to a query were parametrised
to 1, 5, 10, 15, 20, 25. Evaluation on the final query is performed on the valida-
tion (as it was for Hausner et al.[4]) and unseen sets. As in the work by Simon
et al.[20], queries are evaluated using precision, recall (sensitivity), and number
needed to read (NNR). Additionally, we compute Fβ for β = 0.5, 1, 3 (standard
values used to evaluate automatic systematic review methods [15]).

4 Results

We first compare the results obtained using the computational method for ob-
jectively deriving search strategies against those the queries originally used to
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Fig. 2: Variance across topics for the best selected values for different parame-
ters, via optimisation of the considered evaluation measures on validation set.

0.0 0.1
Unseen

0.00

0.05

0.10

0.15

V
al

id
at

io
n

F1 (r=0.9164)

0.0 0.1
Unseen

0.00

0.05

0.10

0.15

V
al

id
at

io
n

F3 (r=0.8045)

0.000 0.002
Unseen

0.000

0.001

0.002

0.003

V
al

id
at

io
n

Recall (r=0.9999)

0.00 0.02 0.04
Unseen

0.00

0.01

0.02

0.03

0.04

V
al

id
at

io
n

Original (r=0.9952)

0.00 0.05 0.10
Unseen

0.000

0.025

0.050

0.075

0.100

V
al

id
at

io
n

F1+MeSH (r=0.7159)

0.00 0.02 0.04
Unseen

0.00

0.02

0.04

V
al

id
at

io
n

F3+MeSH (r=0.8467)

0.00 0.01
Unseen

0.000

0.005

0.010

0.015

V
al

id
at

io
n

Recall+MeSH (r=0.9989)

0.00 0.01
Unseen

0.000

0.005

0.010

0.015

V
al

id
at

io
n

Original (relaxed) (r=0.9930)

Fig. 3: Correlation of F1 between validation and unseen for the results presented
in Table 2. Pearson’s r correlation is signified in the title of each subplot.

retrieve studies. We then study the effect selection of terms has on queries. Next,
we contrast the differences between adding versus not adding MeSH terms and
report the differences between the most effective and the least effective query
when MeSH terms are not added and when they are added. And finally, we
compare our adaptation to the original method.

Empirical results obtained by applying our method to queries is reported in
Table 2. Our approach produces queries that are tuned for different evaluation
measures. We show that for the Fβ variations, NNR, precision, and recall, there
are queries which outperform the original queries for each of these measures.
While tuning parameters produces gains over the original queries, it introduces
a trade-off. Generally, after tuning, queries with gains for precision measures
obtain significant losses for recall measures compared to the original queries
(e.g., queries tuned for F1 without adding MeSH terms obtain the highest pre-
cision, but suffer a significant loss in recall). Likewise, where there are gains in
recall, there are significant losses in precision compared to the original queries
(e.g., queries tuned for recall with the addition of MeSH terms obtained the
highest recall, however suffer a significant loss in precision). Figure 2 highlights
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(a) Prevalence (p) of terms for CD009135.

development
n=39

Population
n= 30m

p n p n

visceral 0.9231 36 0.0026 76907
in 0.8974 35 0.0235 707649
test 0.8974 35 0.0847 2553063
leishmaniasis 0.8462 33 0.0009 27225
to 0.7436 29 0.0237 715449
patients 0.6154 24 0.1826 5503941
positive 0.5641 22 0.0513 1546457
specificity 0.5385 21 0.0401 1209795
is 0.5385 21 0.0223 671619
sensitivity 0.4872 19 0.0423 1275222

(b) Prevalence (p) of terms for CD010276.

development
n=27

Population
n= 30m

p n p n

oral 0.9630 26 0.0356 1072216
in 0.9630 26 0.0235 707649
to 0.8519 23 0.0237 715449
patients 0.6667 18 0.1826 5503941
specificity 0.6667 18 0.0401 1209795
lesions 0.6296 17 0.0202 610428
sensitivity 0.5926 16 0.0423 1275222
detection 0.5556 15 0.0289 872069
is 0.5556 15 0.0223 671619
malignant 0.5185 14 0.0122 369252

Table 3: Prevalence of the top 10 terms in development and Population sets for
the most effective (Sub-table 3a), and least effective (Sub-table 3a) topics in F1.

the differences in parameter choices tuned for each evaluation measure. Higher
DF thresholds for the development and lower DF thresholds for the population
lead to queries with higher precision and lower recall. Lower DF thresholds for
the development and higher thresholds for the population lead to queries with
higher recall and lower precision. Furthermore, adding more MeSH terms in-
creased recall but at the expense of precision, as expected. Finally, while using
the validation set appears to be a good indication of how the query will perform
on unseen data, over-fitting leads to the trade-off in precision and recall. The
correlation between the performance on the validation data and the unseen data
is presented in Figure 3. The figure suggests that performance obtained when
tuning parameters on the validation set are strongly correlated with those ob-
tained on unseen data (for the same parameters values). However, we find that
as more weight is placed on precision, the correlation between performance on
the unseen data and validation data becomes weaker.

We further analyse the queries by studying the terms that were considered
for inclusion by threshoding: we focus on queries that did not have MeSH terms
added. Table 3 provides a comparison between the highest performing topic in
terms of F1 on the unseen set (Table 3a, topic CD009135: Rapid tests for the
diagnosis of visceral leishmaniasis in patients with suspected disease) and the
lowest performing topic (Table 3b, topic CD010276: Diagnostic tests for oral
cancer and potentially malignant disorders in patients presenting with clinically
evident lesions). Both topics contain high prevalence terms from the title of the
systematic review – indicating they are likely relevant to the topic. However, this
is the case for terms identified in the best performing query, as well as for those
in the worst. This suggests that the identification of terms likely plays only a
partial role in the effectiveness of the query – and that selection and location
within the Boolean syntax of the query may also be conducive of effectiveness.
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CD009579 CD009647

Parasite Egg Count Aged, 80 and over
Schistosomiasis haematobia Water-Electrolyte Balance
Antigens, Helminth Body Water
Sensitivity and Specificity Osmolar Concentration
Schistosoma haematobium Electric Impedance
Schistosomiasis mansoni Dehydration
Hematuria Sodium
Schistosoma mansoni Reproducibility of Results
Feces Prospective Studies
Prevalence Urine

Table 4: Top 10 MeSH terms identified in
development set for CD009579 (left, highest
F1) and CD009647 (right, lowest F1).
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Fig. 4: Normalised differences in
no. of terms in queries between
our method and relaxed original.

We also study the interplay between the number of studies provided in the
development set and query effectiveness. One may hypothesise that a higher
number of studies in the development set is associated to higher effectiveness
(given that topic CD009135 contains 39 references in the development set, while
topic CD010276 contains 27). Indeed there is a moderate positive correlation
(Pearson’s r = +0.51) between the size of the development set (used to derive
terms) and F1 on unseen data. Similarly, we study the interplay between the
number of terms in the final query and effectiveness. We found a weak negative
correlation (Pearson’s r = −0.2) between the number of terms in queries and
the actual effectiveness on the unseen set (F1). This suggests that including few
representative terms is more conducive of effectiveness than many broad terms.

Differences between queries with MeSH terms and those without are also
analysed. The results in Table 2 suggest a trade-off in precision and recall when
MeSH terms are added. When MeSH terms are added, we observe a higher recall,
as expected, but lower precision than when MeSH terms were not added. Queries
with MeSH terms did not retrieve a significantly higher number of studies than
those without. We now study the effect of adding MeSH terms in more detail,
specifically on queries where parameters were tuned for F3, where the high-
est gains were observed overall. The most effective and least effective queries
in terms of F1 were for topics CD009579, Circulating antigen tests and urine
reagent strips for diagnosis of active schistosomiasis in endemic areas (preci-
sion: 0.0330, recall: 0.1765, F1: 0.0556), and CD009647, Clinical symptoms, signs
and tests for identification of impending and current water-loss dehydration in
older people (precision: 0.0002, recall: 0.4286, F1: 0.0003). The MeSH terms iden-
tified for addition to these queries are listed in Table 4. Figure 5 presents the
two queries for comparison. Sub-figures 5a and 5b contain the aforementioned
best and worst queries derived by optimising F1. The identified MeSH terms
lead to small improvements in recall when they are added to the query, at the
expenses of a substantial drop in precision. When observing the performance on
the validation data, topic CD009579 still performs better than topic CD009647.
This suggests that this particular topic was more difficult to search for. This
is reflected in the queries originally formulated for these topics. The original
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((schistosomiasis OR cca OR used OR found OR hematuria OR either) AND (strips OR urinalysis
OR dipstick OR dipsticks OR mg OR Parasite Egg Count) AND (village OR villages OR kg))

(a) Highest F1; query for topic CD009579.

((found OR urine OR balance OR Aged, 80 and over) AND fluid)

(b) Lowest F1; query for topic CD009647.

Fig. 5: Computationally derived queries. Queries refer to the most effective (Sub-
figure 5a) and the least effective (Sub-figure 5b) in terms of F1 (by optimising for
F1) among those in the collection. The queries do not contain field restrictions
for space reasons. MeSH terms indicated by italics ([Mesh Terms:noexp]). In
all other cases the [Title/Abstract] field restriction was applied.

1. prostate.ti,ab.
2. psa.ti,ab.
3. used.ti,ab.
4. either.ti,ab.
5. seed.ti,ab.
6. symptom.ti,ab.
7. ml.ti,ab.
8. toxicities.ti,ab.
9. prostatic.ti,ab.
10. Prostatic Neoplasms/
11. or/1-10
12. beam.ti,ab.
13. brachytherapy.ti,ab.
14. radical.ti,ab.
15. prostatectomy.ti,ab.
16. ebrt.ti,ab.
17. cox.ti,ab.
18. androgen.ti,ab.
19. implantation.ti,ab.
20. consensus.ti,ab.
21. pretreatment.ti,ab.
22. sexual.ti,ab.
23. neoadjuvant.ti,ab.
24. mailed.ti,ab.
25. implant.ti,ab.
26. curative.ti,ab.
27. or/12-26
29. 11 and 27

Fig. 6: Computationally
derived objective query.

1. cancer.ti,ab,sh.
2. adenocarcinoma.ti,ab,sh.
3. 1 or 2
4. prostat*.ti,ab,sh.
5. 3 and 4
6. Prostatic Neoplasms/
7. 5 or 6
8. seed*.rs.
9. permanent*.ti,ab,sh.
10. 8 or 9
11. implant*.ti,ab,sh.
12. 10 and 11
13. Brachytherapy/
14. Brachytherapy.ti,ab,sh.
15. or/12-14
16. 7 and 15

Fig. 7: Manually derived objective
query (commonalities in italics).

# Ret NNR Precision Recall

Manual 78913 6070.23 0.0002 1.0000
Computational 48945 3496.14 0.0003 1.0000

Table 5: Difference in effectiveness
between the computationally derived
query and the manually derived query.

query for topic CD009579 (precision: 0.0019, recall: 1, F1: 0.0038) performs bet-
ter than the original query for topic CD009647 (precision: 2.610e−5, recall: 1, F1:
5.210e−5). Note that although the performance of the queries are similar, the
manually formulated queries have many more terms (CD009579 – derived: 15,
original (relaxed): 40; CD009647 – derived: 6, original (relaxed): 199). However,
looking at the distribution of query lengths for each method in Figure 4, not
only is there little variation in the total number of terms in queries, but there
is little variance in amount of terms added in the automatic method and in the
relaxed versions of the original queries.

Finally we study a query derived manually (by Hausner et al. [4], Figure 7)
and the same query derived computationally (Figure 6). Table 5 presents the
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differences in effectiveness given the number of documents retrieved, NNR, pre-
cision, and recall on the same set of validation documents (note that only the
development and validation sets are used to make a fair comparison to the man-
ual method; thus no tuning was used). The query derived objectively using our
computational method retrieves less documents, but maintains recall: this results
in a saving of approximately USD$90,000 (considering double screening and the
costs/times per study reported by McGowan et al. [13]).

5 Conclusion

We presented a computational approach to objectively deriving search strate-
gies for systematic reviews. This approach adapts and extends the proposal of
Hausner et al.[4], to further reduce human subjectivity in an otherwise objec-
tive methodology. The computational method can be used as a starting point
for query formulation, as demonstrated by our results. The manual objective
method included human intervention; our computational adaptations and ex-
tensions approximated the steps a human would take. To better approximate
these steps, we will set up an interactive query formulation study with infor-
mation specialists. The feedback and results from this can be used to improve
computational methods and would provide us with the means to fairly compare
our computational approach with the ad-hoc method.

We have identified a number of avenues for further extending the fully auto-
matic approach and its empirical evaluation. Firstly, randomness is introduced
in this method when the test set is split into development, validation, and un-
seen. The use of 3-fold cross validation would reduce experimental bias in the
subsequent phases. Next, we have observed that in the current approach only
unigrams are used as candidate terms for possible inclusion in queries (this is
also the case in the original method and has already been identified as an is-
sue [4]). This is a limitation because the semantic context that may have been
encoded as a phrase (e.g., in an n-gram such as “myocardial infarction”) is lost.
We suggest that by automatically identifying medical phrases using automatic
tools such as MetaMap, this shortcoming can be overcome.

A limitation of this work is that a prospective study was not undertaken. New
queries formulated using our method may have retrieved unjudged but relevant
studies. A future extension of this work could be to use our proposed method to
identify the proportion of new relevant studies retrieved (if any). Another task
to be considered is to automatically further refine derived queries. Scells and col-
leagues [18,19] have found that automatic generation and refinement techniques
can improve the effectiveness of existing Boolean queries.

The computational method presented is envisioned to be integrated into tools
for assisting researchers conducting systematic reviews (for example, query sug-
gestion [8]). The aim is not to replace humans constructing search strategies
— at the very least, a number of gold standard studies are still needed to seed
this approach, (as is typically the case in this context [10]). Query formulation
is currently a highly subjective and error-prone process, and reducing subjec-
tivity and mistakes in search strategy construction can only lead to less biased,
reproducible, and timely systematic reviews.
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