
An Information Retrieval Experiment Framework
for Domain Specific Applications

Harrisen Scells
Queensland University of Technology

Brisbane, Queensland
harrisen.scells@hdr.qut.edu.au

Daniel Locke
Queensland University of Technology

Brisbane, Queensland
daniel.locke@hdr.qut.edu.au

Guido Zuccon
Queensland University of Technology

Brisbane, Queensland
g.zuccon@qut.edu.au

ABSTRACT
We present a framework for constructing and executing informa-
tion retrieval experiment pipelines. The framework as a whole is
built primarily for domain specific applications such as medical lit-
erature search for systematic reviews, or finding factually or legally
applicable case law in the legal domain; however it can also be used
for more general tasks. There are a number of pre-implemented
components that enable common information retrieval experiments
such as ad-hoc retrieval or query analysis through query perfor-
mance predictors. In addition, this collection of tools seeks to be
user friendly, well documented, and easily extendible. Finally, the
entire pipeline can be distributed as a single binary with no depen-
dencies, ready to use with a simple domain specific language (DSL)
for constructing pipelines.
ACM Reference Format:
Harrisen Scells, Daniel Locke, and Guido Zuccon. 2018. An Information
Retrieval Experiment Framework for Domain Specific Applications. In SIGIR
’18: The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3209978.3210167

1 PROBLEM AND TARGET USERS
Information retrieval (IR) is a largely empirical field, where theo-
retical advances are empirically demonstrated and validated, often
across a large set of collections, tasks and domains. Experiments
often consist of glueing together a number of tools for indexing,
query parsing, retrieving, and evaluating, among other tasks. Often,
these tools involve the use of multiple programming languages and
their combination (or glueing) is often referred to as a pipeline.

As an example, take an experiment of evaluating the effective-
ness of query performance predictors [2]. To carry out such an
experiment, one must first transform the queries from their origi-
nal format (e.g. PubMed) into a format suitable for the IR system
they use (e.g. Elasticsearch, Terrier, Indri, Galago). Next, one must
write code that either extends that system to implement each query
performance predictor1, or implement each query performance
predictor separately to the search system by reading in result files
1Typically this is a difficult task if one does not have knowledge of the system and all
of the nuances, and deals with potentially limited documentation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5657-2/18/07.
https://doi.org/10.1145/3209978.3210167

produced by it. Next they must produce configuration files for the
system and possibly for the extensions they produced. Then they
must execute the system and collect the results. In turn, they will
need to evaluate the produced result files using a separate utility
(e.g. trec_eval) and possibly within a separate script (e.g. in Bash).
Finally, if one was inclined to compare the results to a different
system, they must redo the previous steps and possibly perform
statistical analysis (e.g., in R, Python, or MS Excel); rewriting code,
potentially introducing bugs. Returning to the pipeline to update
it or attempting to extend it often results in rewriting part of the
code or starting again with a different approach. Not to mention
that often the scripts or programs behind the pipelines require de-
pendencies that become outdated and incompatible with past and
future versions.

Our proposed framework aims to make the creation and main-
taince of such pipelines easier. The framework targets both inex-
perienced researchers that would use it for basic experiments and
experienced users that are able to further extend the framework.
The result of both use cases is a reproducible pipeline that can easily
be redistributed.

The pipeline framework proposed and detailed in this paper
abstracts many of these pain points. For example: if one wanted
to perform the same experiment using this framework (and if the
interfaces for a search system are already implemented, e.g., Elas-
ticsearch), then one only needs to implement the interface for a
new query performance predictor. They are then able to perform
the entire experiment by specifying a pipeline such as the one
in Figure 1. Each component of this pipeline (i.e. cqr, transmute,
groove, boogie), as well as the domain specific language (DSL)
used to construct experimental pipelines are detailed in Section 2.

2 EXPERIMENTAL FRAMEWORK
The pipeline that combines the experimental framework is com-
posed of four components: a query representation that is common
among the three other components; a query parser and compiler
for transforming other query languages into the common query
representation, a pipeline for executing IR experiments, and finally
a domain-specific language (DSL) to construct a pipeline. The four
components are available as open source libraries on GitHub. All
of the code for the framework is written in Go [5] — a highly sta-
ble and backwards compatible language that puts an emphasis on
ensuring programs written in the past will work in the future, and
that produces packaged binary files with zero dependencies (two
highly valuable features to the problem this framework seeks to
address).

https://doi.org/10.1145/3209978.3210167
https://doi.org/10.1145/3209978.3210167


SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Scells e.t

Queries (Topics)

Parsing and Compilation

Preprocessing

Experiments and Analysis

Evaluation

Output

trec_eval-style run file, evaluation results,
analysis results, processed queries

boogie

transmute
groove

cqr

DSL

Figure 1: Overview of the steps in the pipeline. Each grey box
represents a step in the pipeline.

As of publication the framework has the following functionalities:
(1) The ability to load four types of query formats:

• MEDLINE: a popular query language used for medical litera-
ture queries and in systematic reviews;

• PubMed: another popular query language used for medical
literature queries and in systematic reviews;

• LexesNexis: a popular query language for legal search2 and;
• Keyword: typical queries comprising a string of characters.

(2) The ability to use two search systems: Elasticsearch [1], and Ter-
rier [4]; with the Galago system currently being implemented

(3) Query preprocessing methods to modify queries such as remov-
ing alpha-numeric characters or numbers (extendible to other
character sets), and Boolean query transformation methods
to, for example, modify logical operators, or simplify Boolean
expressions (extendible),

(4) Performmeasurements on queries, such as counting the number
of terms, clauses, or logical operators in Boolean queries and
computing query performance predictor scores. In particular,
the following have been implemented:
• Pre-retrieval predictors: Average Inverse Collection Term
Frequency, Average; Sum; Max; and Standard Deviation of
Inverse Document Frequency, Sum andMax Collection Query
Similarity, Simplified Clarity Score and Query Scope.

• Post-retrieval predictors: Weighted Information Gain,
Weighted Entropy Gain, Normalised Query Commitment,
and Clarity Score.

2See implementation at https://github.com/dan-locke/lexes

1. MMSE*.ti,ab.
2. sMMSE.ti,ab.
3. Folstein*.ti,ab.
4. MiniMental.ti,ab.
5. "mini mental stat*".ti,ab.
6. or/1-5

Figure 2: A typical Medline query. Note the operator on line
6 refers to the keywords between lines 1 through 5, the field
restrictions (.ti,ab.), and the explicit stemming (*).

This framework can be extended to perform other experiments,
for example implementing retrieval functions.

(5) Retrieval results can be evaluated by specifying any combi-
nation of the number of documents retrieved, the number of
relevant documents, the total number of relevant documents
retrieved, precision and recall (in addition to other standard
evaluation measures that can be implemented with ease or by
integrating a tool such as trec_eval). The result of the mea-
surements and evaluation can also be output in either comma
separated file format (csv) or JSON notation.
Each of these components: query formats, search systems, pre-

processing, Boolean transformations, measurements, evaluation
measures, and output options can be extended.

2.1 Common Query Representation (cqr)
The common query representation module is used to simplify ex-
periments in the rest of the pipeline. It forms the basis for how
queries are represented and specifies how they can be transformed.
The representation is similar to that of the Elasticsearch DSL. There
are two possible representations of a query: the first is a keyword
which is similar to what is seen in web search — a string of charac-
ters restricted to some fields; the second is a Boolean query —which
combines keyword queries with logical operators. A CQR query
in human-readable notation takes the form of JSON. An example
of a common query representation of a typical MEDLINE query
(Figure 2) is visualised in Figure 3.

The code for the CQR component is made available at
https://github.com/hscells/cqr

2.2 Query Parser/Compiler (transmute)
When replicating a domain-specific IR task, it is often required to
use a specific query language [3, 6]. These queries can either be
manually translated by hand or automatically by a parser/compiler
into a target query language for use in an IR system. The transmute
library and command-line tool is a parser/compiler for queries
from one query language to another. Currently, transmute can
transform Medline and PubMed queries, and CQR queries into
Elasticsearch queries (the Terrier query language is currently being
implemented).

The code for the query parser/compiler component is made
available at https://github.com/hscells/transmute

2.3 Experiment Pipeline (groove)
The groove library provides abstractions and implementations for
performing IR experiments. A groove pipeline comprises a query
source (the format of the queries), a statistic source (a source for
computing IR statistics; i.e. a search engine such as Elasticsearch

https://github.com/dan-locke/lexes
https://github.com/hscells/cqr
https://github.com/hscells/transmute


An Information Retrieval Experiment Framework for Domain Specific Applications SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

{
"operator": "or",
"children": [

{
"query": "MMSE*",
"fields": ["title", "text"],
"options": {

"truncated": true
}

},
{

"query": "sMMSE",
"fields": ["title", "text"],

},
{

"query": "Folstein*",
"fields": ["title", "text"],
"options": {

"truncated": true
}

},
{

"query": "MiniMental",
"fields": ["title", "text"]

},
{

"query": "\"mini mental stat*\"",
"fields": ["title", "text"],
"options": {

"truncated": true
}

}
]

}

Figure 3: A CQR query in JSON notation. The original query
(Figure 2) has been parsed and compiled into the one above.

or Terrier), preprocessing steps (e.g., lowercase, stemming, stop-
word removal), anymeasurements to make (e.g., query performance
predictors, retrieval results, evaluation criteria), and any output for-
mats (e.g., JSON, csv). Each component in the pipeline is extendible
and well documented.

Currently, groove can load Medline and PubMed queries (query
languages commonly used in systematic reviews) via transmute,
and LexesNexis queries (a query language commonly used in legal
IR) via an implementation integrated into groove.

The code for the experiment pipeline component is made avail-
able at https://github.com/hscells/groove

2.4 DSL Front-end (boogie)
The boogie command-line utility provides higher level access to
groove. It allows for the specification of a pipeline to be written
in a domain specific language (DSL) that groove can then execute.
An example specification pipeline file can be seen in Figure 4. At a
high level, the purpose of this pipeline is to compute measurements
for MEDLINE queries between a number of query performance
predictors and the performance of the actual effectiveness of the

queries in terms of precision and recall. At a deeper level, reading
the pipeline from top to bottom: the type of queries are specified
(medline), the source of statistical information (i.e. search engine)
is configured to point to an Elasticsearch instance, the list of query
performance predictors measurements are listed followed by the
evaluation measures to record, and, finally, the last item specifies
how the results of the pipeline should be output and in which
formats (the trec_eval-style results file is also output so as to
record the retrieval results.

This pipeline file can be distributed or shared to allow others to
see exactly which steps occurred and to provide a high-level view of
the experiment. In addition to this, rapid configuration andmodifica-
tion can be performed, allowing, for example, different parameters
of retrieval functions to be changed. Finally, adding language fea-
tures to the DSL (e.g., adding new output formats or measurements)
has been made more convenient by using a dependency-injection
style system for registering components.

The code for the domain specific language component is made
available at https://github.com/hscells/boogie

3 IMPACT
To the best of the authors knowledge, such a tightly integrated
collection of tools to perform domain specific IR experiments does
not exist. Some tools such as Galago incorporate evaluation into a
basic pipeline, the documentation of such tools is however limited
and extending it requires expertise with the system.

While the focus of the framework is domain specific applications
(i.e. the tooling and libraries are built for this purpose), this is not a
limitation of the framework. For example, broader IR experiments
such as ad-hoc web retrieval experiments can also be performed.
The key factor in the framework is the separation of the IR system
from the experiment specification. In this way, the system is con-
figured in a typical way and the code that performs experiments is
independent of that. This separation of the search system codebase
and the experiment codebase enables researchers to more easily
compare two systems, implement new features for existing systems,
and rapidly prototype IR experiments.

4 USAGE
This experiment pipeline framework can be used in two ways. The
first is a command-line utility whereby a pipeline is specified as
in Figure 4. The second is programmatic access, where a pipeline
is constructed directly in groove using Go. An example of the
library usage can be seen in Figure 5. A web version that enables
experiments to be designed through an intuitive interface is also in
development for users with limited programming or command-line
knowledge.

Using the boogie DSL, one can perform experiments that would
otherwise be non-trivial. For example, to compare two systems
one can switch the configuration item from one search system
to another with no additional code to write. Another benefit of
the boogie DSL is the ability to share and record experiments in a
human-readable format.We hope that this tool can lower the barrier
to entry and reduce redundant code written for IR experiments.

All four components of this framework are available as a down-
loadable interface at http://ielab.io/querylab.

https://github.com/hscells/groove
https://github.com/hscells/boogie
http://ielab.io/querylab


SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Scells e.t

{
"query": {

"format": "medline"
},
"statistic": {
"source": "elasticsearch",
"options": {

"hosts": ["http://localhost:9200"],
"index": "medline",
"field": "abstract",
"scroll": true,
"search": { "size": 10000, "run_name": "qpp" }

}
},
"measurements": ["avg_ictf", "sum_idf", "avg_idf",

"max_idf", "std_idf", "clarity_score"],
"evaluation": [

{ "evaluate": "precision" },
{ "evaluate": "recall" }

],
"output": {
"evaluations": {

"qrels": "medline.qrels",
"formats": [

{
"format": "json",
"filename": "medline_qpp_eval.json"

}
]

},
"measurements": {

"formats": [
{
"format": "json",
"filename": "medline_qpp.json"

}
]

},
"trec_results": {

"output": "medline_qpp.results"
}

}
}

Figure 4: An example boogie pipeline specification.

5 REQUIREMENTS FOR PRESENTATION OF
THE DEMONSTRATION

Along with the wireless network access and poster mount provided,
we kindly request two large monitors with two HDMI cables. We
plan to demonstrate the software interactively, allowing attendees
on one monitor to formulate, edit, and run pipelines and see the
results through a custom interface. On the second monitor, we plan
to display aspects of the code attendees would like to view in more
detail.

1 // Construct the pipeline.
2 pipelineChannel := make(chan groove.PipelineResult)
3 p := pipeline.NewGroovePipeline(
4 query.NewTransmuteQuerySource(
5 query.MedlineTransmutePipeline),
6 stats.NewElasticsearchStatisticsSource(
7 stats.ElasticsearchHosts(
8 "http://localhost:9200"),
9 stats.ElasticsearchIndex("medline"),
10 stats.ElasticsearchField("abstract"),
11 stats.ElasticsearchScroll(true),
12 stats.ElasticsearchSearchOptions(
13 stats.SearchOptions{
14 Size: 10000,
15 RunName: "qpp",
16 })),
17 pipeline.Measurement(preqpp.AvgICTF, preqpp.SumIDF,
18 preqpp.AvgIDF, preqpp.MaxIDF,
19 preqpp.StdDevIDF,
20 postqpp.ClarityScore),
21 pipeline.Evaluation(eval.PrecisionEvaluator,
22 eval.RecallEvaluator),
23 pipeline.MeasurementOutput(output.
24 JsonMeasurementFormatter),
25 pipeline.EvaluationOutput("medline.qrels",
26 output.JsonEvaluationFormatter),
27 pipeline.TrecOutput("medline_qpp.results"))
28
29 // Execute it on a directory of queries. A pipeline
30 executes queries in parallel.
31 go p.Execute("./medline", pipelineChannel)
32
33 for {
34 // Continue until completed.
35 result := <−pipelineChannel
36 if result.Type == groove.Done {
37 break
38 }
39 switch result.Type {
40 case groove.Measurement:
41 // Process the measurement outputs.
42 err := ioutil.WriteFile("medline_qpp.json",
43 bytes.NewBufferString(result.Measurements[0])
44 .Bytes(), 0644)
45 if err != nil {
46 log.Fatal(err)
47 }
48 case groove.Evaluation:
49 // Process the evaluation outputs.
50 err := ioutil.WriteFile("medline_qpp_eval.json",
51 bytes.NewBufferString(result.Evaluations[0])
52 .Bytes(), 0644)
53 if err != nil {
54 log.Fatal(err)
55 }
56 }
57 }

Figure 5: Example of using the programmatic interface with
the groove library. The result of this code has the same effect
as that of the pipeline in Figure 4.

REFERENCES
[1] S. Banon. 2011. Elasticsearch: An open source, distributed, RESTful search engine.
[2] S. Cronen-Townsend, Y. Zhou, andW. B. Croft. 2002. Predicting query performance.

In SIGIR.
[3] D. Locke, G. Zuccon, and H. Scells. 2017. Automatic Query Generation from Legal

Texts for Case Law Retrieval. In Information Retrieval Technology.
[4] I. Ounis, G. Amati, Plachouras V., B. He, C. Macdonald, and Johnson. 2005. Terrier

Information Retrieval Platform. In ECIR.
[5] R. Pike. 2009. The Go Programming Language. (2009).
[6] H. Scells, G. Zuccon, B. Koopman, A. Deacon, L. Azzopardi, and S. Geva. 2017.

Integrating the framing of clinical questions via PICO into the retrieval of medical
literature for systematic reviews. In CIKM’17.


	Abstract
	1 Problem and Target Users
	2 Experimental Framework
	2.1 Common Query Representation (cqr)
	2.2 Query Parser/Compiler (transmute)
	2.3 Experiment Pipeline (groove)
	2.4 DSL Front-end (boogie)

	3 Impact
	4 Usage
	5 Requirements for Presentation of the Demonstration
	References

