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Abstract. The automatic diagnosis of a medical condition provided the symptoms exhibited
by a patient is at the basis of systems for clinical decision support, as well as for applications
such as symptom checkers. Existing methods have not fully exploited medical knowledge:
this likely hinders their effectiveness. In this work, we propose a knowledge-aware diagnosis
ranking framework based on medical knowledge graph (KG) and graph convolutional neural
network (GCN). The medical KG is used to model hierarchy and causality relationships be-
tween diseases and symptoms. We have evaluated our proposed method using realistic patient
cases. The empirical results show that our knowledge-aware diagnosis ranking framework can
improve the effectiveness of medical diagnosis.
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1 Introduction

A common task in medical practice is to identify a diagnosis for a patient presenting with one or more
symptoms. To do so, clinicians rely on their extensive medical knowledge about the relationships
between symptoms and the possible diagnoses, and weight up symptoms (and laboratory findings)
to determine the most likely diagnosis, often through a process called differential diagnosis [25].
Computer assisted or automated methods for medical diagnosis have emerged where computer
algorithms are used to mine a large amount of medical data (from medical literature or electronic
health records) to provide clinicians with recommendations regarding a patient case [15]. Current
methods are limited in that they do not sufficiently exploit medical knowledge [5,6]. In addition,
most methods formulate the problem as a classification task and assume diagnosis classes are
independent: this is a problem as medical conditions are instead related (e.g., hierarchy of conditions,
causality between conditions – see Section 2 for details).

We posit that the exploitation of medical knowledge, in particular as encoded in medical KGs,
within an end-to-end deep learning architecture for diagnosis identification may improve the ef-
fectiveness of current automated medical diagnosis systems. To this end, we propose a Knowledge
Graph Convolutional Network (KGCN) method for ranking diagnosis (Section 3), that exploits
medical KGs to enable capturing insightful diagnosis patterns. In our method, a patient’s symp-
toms are identified within the KG and used to derive likely diagnoses (diseases) for the patient
based on the representations of medical concepts and their relationships encoded in the KGs. We
use the concept of message diffusion in Graph Convolutional Networks (GCN) [9,17] to model the
relationships between symptoms and diseases encoded in the KG. Specifically, we inject a special
node - patient node - to the medical KG and connect its symptoms to it (see Fig. 1). We refer to
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Fig. 1: Exemplified medical KG. Concepts (nodes) belong to different types (e.g., symptoms (or-
ange), diseases (green)) and are linked by various relationships, e.g., ISA, HAS SYMPTOM .

the formed graph as diagnosis graph and each node in this graph has an initial representation. We
then employ stacked GCN layers to the diagnosis graph to learn, for each node, a comprehensive
representation. Through the message-passing mechanism of GCN, nodes share their information
with their neighbours and meanwhile aggregate the received information from their neighbours. By
stacking l GCN layers, the nodes can receive messages from their l-hop neighbours. This allows to
use different types of relations and multi-hop contexts of nodes. We experiment with different fusion
functions to study the most effective way of aggregating context information within a node. After
obtaining comprehensive representations of disease concepts and patients, we predict the likelihood
of a disease node to be connected to the patient node (link prediction) with a match model. Finally,
we use this inferred probability to rank diagnoses for a given patient case.

We have evaluated the proposed method on a dataset of realistic patient vignettes redacted
by medical experts (Sections 4 and 5). Results show that our KGCN provides better diagnosis
predictions than existing methods. We further tease out the impact of data sparsity, different
medical relations, fusion functions, number of GCN layers, on the effectiveness of KGCN.

2 Related Work

Automatic medical diagnosis aims to assist clinicians with diagnosing patients by using computer
algorithms to identify the most probable diagnoses for a patient, given their case description (disease
history, symptoms, signs) [15].

Many Machine Learning algorithms have been explored to learn diagnosis patterns automatically
from existing medical records to support this task [24,16,1,27], but often the learned models achieved
limited effectiveness. This has been because of insufficient data being available and the fact that
relationships between medical concepts not being modelled and exploited by these methods.

To improve effectiveness, recent methods have attempted to learn distributed representations of
medical concepts, e.g., from ontologies or electronic health records [6,5], and use them to enhance
predictive models. Other work has introduced prior medical knowledge in the form of knowledge
graph [28] or rules [18] into models to improve the effectiveness of disease prediction. Though
promising, also this line of work has limitations.
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A first limitation is that existing work formulates medical diagnosis as a (multi-class) classifi-
cation problem. The underlying assumption in doing so is that the classes (diseases) are assumed
independent: this assumption is not true as often diseases are related e.g., due to presenting the same
symptoms, being a more specific instance of a general condition, or being common co-morbidities.
Adequately modelling this relatedness, instead, may likely allow for better discrimination among
diagnoses and thus better diagnosis effectiveness. In this work we take a different stand by for-
mulating medical diagnosis as a matching problem, where patient’s descriptions (symptoms) and
diagnoses are represented within a knowledge graph using rich features and are matched to produce
a ranking of possible diagnoses, starting from the most likely.

Another limitation of previous work is that medical knowledge has often not been fully exploited.
Medical knowledge has been extensively modelled by manually curated domain-specific resources
such as medical ontologies and terminology, e.g., SNOMED CT [23], MedRA1, UMLS [3], and au-
tomatically mined medical Knowledge Graphs (KGs), e.g., KnowLife [7], Rotmensch et al.’s [19],
HighLife [8], etc. In Fig.1 we provide a schematic example of a Knowledge Graph in this con-
text. While previous work has used such medical knowledge for diagnosis identification, this came
with limitations. Some works [5,6] mainly focused on hierarchy information (i.e., ISA) and ig-
nored other important relationships, such as HAS SYMPTOM between disease and symptom,
HAS COMPLICATION between diseases, etc.. Some other works only considered to add direct
contexts in KGs to the model but neglected multi-hop contexts. However, multi-hop contexts are
common in medicine, often being used for modelling properties such as the transitivity of hierarchy
or chains of relationships for causality. Fully relying on the extensive medical knowledge captured
in these domain-specific resources, instead, may likely lead to better diagnosis effectiveness.

As mentioned above, our solution relies on a medical KG to estimate the match between a set of
symptoms and the likely diagnosis. Three main avenues have been explored in the literature when
relying on KGs for matching:

1. use knowledge graph embedding (KGE) algorithms to learn the vector representations of entities
and relationships in a KG, and then use these within the downstream applications related to
matching [10]. In this way, KGs are used independently of the end-task and thus their use is
rather flexible. However, there is a mismatch between the goal of the KGE construction process,
which is to encode the semantic relatedness among entities in the KG, and the end-task goal
for which the learned embeddings are used, i.e. matching

2. identify various connection patterns among entities in a KG to exploit as additional matching
signals. This provides intuitive methods that heavily rely on manually designed meta-graphs:
these however are often hard to tune in practice.

3. integrate matching models and KGs in a hybrid graph and inject the structure information
of KGs into the matching problem to form an end-to-end task. This solution can avoid the
shortcomings of the first two alternatives described above.

The proposed KGCN follows the third solution, integrating the matching model and the KG in a
hybrid graph to be used within an end-to-end pipeline.

Our proposed method relies on Graph Convolution Networks (GCN) [20,4,14], which generalized
convolutional neural networks to non-Euclidean spaces such as a graph. The key idea of GCNs is
to generate node embeddings through message passing or information diffusion processes executed
on the graph [9].

1 https://www.meddra.org/
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Fig. 2: Overview of our method. The framework consists of several stages: 1) construct the diagnosis
graph by linking the patient to the medical KG, 2) fuse medical knowledge using stacked GCN
layers to obtain a comprehensive representation of each node, 3) transform the new representations
of patient and disease nodes into the same latent space using MLP layers and obtain similarity
scores using the inner product.

3 Knowledge Graph Convolution Networks for Diagnosis Ranking

Figure 2 provides an overview of our model. In particular, we add a special node to an existing
medical KG to form a diagnosis graph, in which the patient node is linked to nodes representing the
symptoms exhibited by the patient (as described in the patient case vignette). GCN is then adopted
to learn comprehensive representations of the patient and medical concepts. Finally, we predict the
likelihood that a disease node may be linked to the patient node and rank diagnoses based on the
probability distribution with respect to the patient case. We elaborate on each component of the
proposed model in the following.

3.1 Problem Formulation

Medical diagnosis is the process that attempts to determine the disease d ∈ D (D being the set of
possible diseases) affecting a patient p who exhibits a set of symptoms p = {s1, s2, ..., sn}, si ∈ S (S
being the set of possible symptoms). We refer to the pair (p, d) as a case. To assist the diagnosis
process, we exploit a medical KG K = {(h, r, t)|h, t ∈ D∪ S, r ∈ R}, where R is the set of relations
between medical concepts. The KG is essentially a directed heterogeneous graph.

In the learning process, some cases Y = {(pi, di)}, 0 ≤ i ≤ |Y | are provided for training the
model, with the goal to derive a prediction function yp,d = F (p, d | Θ,K ,Y). Here, yp,d represents
the probability that the disorder d is the true diagnosis for patient p, and Θ denotes the parameters
of the prediction function F . In the diagnosis process, given a patient with symptoms, the model
uses F to obtain his matching score with each disease d ∈ D and outputs a ranked disease list.

3.2 Construction of the Diagnosis Graph

We construct the diagnosis graph G by injecting the patient node p to an existing medical KG K .
In this paper, we use a subset of SemmedDB [13] as the KG. SemmedDB contains a large amount
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of predications extracted from biomedical texts (scientific articles); our subset only contains the
triples whose head and tail entities are symptom or disease concepts and the relation is of type isa
or causes2. To construct the diagnosis graph, we create a special patient node, identify the symptoms
of the patient in the KG, and link these symptom nodes to the patient node with edges of type
present in 3. The obtained diagnosis graph is denoted as G = {(u, euv, v)|u, v ∈ D ∪ S ∪ {p}, euv ∈
{present in, causes, isa}}.

3.3 Embedding Layer

The embedding layer is used to assign an initial vector representation to each node in the diagnosis
graph with a look-up table operation. Every concept node c ∈ D ∪ S is assigned a corresponding
embedding hc ∈ RN0

while different patients share a single initial representation hp ∈ RN0

. The
embedding matrix is:

E(1+|D|+|S|)×N0 = [ hp︸︷︷︸
patient

,hd1
, ...,hd|D|︸ ︷︷ ︸
disease

,hs1 , ...,hs|S|︸ ︷︷ ︸
symptom

]. (1)

These embeddings are initialized randomly and optimized in an end-to-end fashion.

3.4 Medical Knowledge Fusion Layer

The medical knowledge fusion layer is designed based on GCN, which employs message-passing
architecture to capture the relatedness between medical concept nodes. In this process, the patient
node also obtains its representation by fusing the symptoms and the potential causes of those
symptoms. In the following, we first illustrate the first-order knowledge fusion and then generalize
to high-order knowledge fusion.

First-order Medical Knowledge Fusion. Within a single GCN layer, the message-passing
process has two stages: (1) each node constructs messages and sends them to its neighbours through
the outbound edges. The content of each message depends on the information contained in the source
node, the type of edge, the information contained in the destination node. (2) each node aggregates
the received messages from all inbound edges and fuses them with the information it contains.

Message Construction. The message sent from node u to v is represented by mu→v = f conc(hu, ruv, αuv),
where ruv is the type of edge euv, αuv is the decay factor of passing a message on edge euv, and
f conc(·) is the message construction function which takes the representation of node u, the edge
type ruv and the decay factor αuv as input. In this work, we implement f conc(·) as:

mu→v = αuv(Wruvhu + bruv ), (2)

where Wruv
∈ RN0×N1

and bruv
∈ RN1

are trainable parameters to distill useful information for
propagation.

2 Note that the relation causes in SemmedDB is rather coarse and encompasses relations that would
normally be treated as separate in other medical KGs, including relations such as has complication,
has symptom.

3 We link a patient with the KG through the symptoms’ Concept Unique Identifiers (CUIs). Medical
concept recognition tools like QuickUMLS [22] and MetaMap [2] can recognize and map terms in patients’
records to CUIs; each entity in the medical KG is represented by a CUI.
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Message Aggregation. We aggregate the received messages at node v by summing them as av =∑
u′∈Nv

mu′→v, where Nv is the set of neighbours. Then, we fuse the aggregated context av with

the node hv itself as h
(1)
v = ffuse(hv,av), where ffuse(·) is the fusion function. In this work, we

exploit GRU as the fusion function as done by Li et al. [17]:

h(1)
v = GRU(hv,av). (3)

Comparison of Context Fusion Methods. The fusion function is a key component of our method
since it determines if the context information can be effectively introduced. Intuitively, a node
eagerly seeks to incorporate context when its representation is not informative enough, and its
context can provide beneficial information. The way in which the context is to be fused with
the node should depend on the representation of the node itself, the messages received from the
context, and their interaction. In our method, we use GRU as the fusion function because its model
structure can support this intuition. As comparison methods, we also implemented two alternative
fusion functions, which are comparatively simple even though widely used in other tasks – these
are described next.

SumFus takes the summation of two context vectors, followed by a non-linear transformation:

h
(1)
v = σ(W sg(av +hv)+bsg),, where W sg and bsg are the parameters, σ is the activation function.

ConcatFus concatenates two context vectors first before non-linear activation h
(1)
v = σ(W cg(av⊕

hv) + bcg),, where ⊕ is the concatenation operation, W cg and bcg are the parameters, σ is the ac-
tivation function.

High-order Medical Knowledge Fusion First-order context aggregation is primary for our
medical diagnosis model since only symptom concepts are connected to the patients. To make the
patient aware of the potential causes of the symptoms he shows, we need to do high-order context
aggregation. By stacking l context aggregation layers, one node in the graph can receive messages
propagated from l-hop neighbours. Formally, we repeat the context aggregation process by applying
graph convolution operation on the graph and use the context vectors obtained from (l−1)-th GCN
layer as the node representations, as in equation

m(l)
u→v = αuv(W (l)

ruv
h(l−1)
u + b(l)ruv

) . (4)

Then, the new context representation of node v is obtained by aggregating the received messages

from its neighbours u′ ∈ Nv and fusing it with h
(l−1)
v :

a(l)
v =

∑
u′∈Nv

m
(l)
u′→v , h(l)

v = GRU(hl−1
v ,a(l)

v ) . (5)

Here, W l ∈ RN l−1×N l

, bl ∈ RN l

are trainable parameters in the l-th GCN layer.

3.5 Feature Transformation and Matching

After aggregating the medical knowledge with L GCN layers, each node obtained a comprehensive
representation, which entails its original representation as well as the aggregated context information
at each GCN layer. At the matching stage, we transform the patient node and disease nodes
using MLP layers separately to get their final representation in the same latent space as ho

p =
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MLP p(h
(L)
p ), ho

d = MLP d(h
(L)
d ). Both of the MLPs have hyper-parameters: the number of hidden

layers and the unit number of each hidden layer. After getting the final representations of the
patient and each disease concept, we conduct inner product to calculate their similarity score as
ydi,p = ho

p
>ho

d. We can further apply the softmax to these similarity scores to get the probability
Pr(di|p) that a certain disease di is the true diagnosis of the patient p.

3.6 Ranking Diagnosis

We can rank the diseases d ∈ D according to their matching scores with a certain patient and then
return a ranked list of diseases. It should be noticed that the patient nodes only have inbound
edges and thus have no effect on the contextual representations of medical concepts. Therefore, the

contextual representations h
(l)
c , c ∈ D∪ S, 0 ≤ l ≤ L of medical concepts only have to be calculated

once and then put in cache for subsequent usage.

3.7 Training Model

To learn the model parameters, we choose Ranking Cross-Entropy, which has been widely used in
matching models, as the loss function. Specifically, for a given patient pi = {sj} and his ground
truth diagnosis dTi , we sample N diseases {dFi,k}1≤k≤N randomly from the disease set D \ {di} as
negative diagnoses. Then, we calculate their matching scores ypidT

i
and {ypidF

i,k
}0≤k≤N . Afterwards,

we apply softmax function on those scores and get their normalized probabilities

[Pr(dTi |pi),Pr(dFi,1|pi), ...,Pr(dFi,N |pi)]
= softmax(ypi,dT

i
, ypi,dF

i,1
, ..., ypi,dF

i,N
).

(6)

The cross entropy loss of training instance (pi, d
T
i ) is formulated as losspi

= − log Pr(dTi |pi). For a
batch of training instances {(pi, dTi )}, the batch loss is

Loss = −
∑
i

log Pr(dTi |pi) + λ ‖ Θ ‖2 , (7)

where the L2 norm of parameters are added with factor λ. Besides, we adopt min-batch Adam to
optimize the model and update the parameters.

4 Experimental Setup

4.1 Dataset and Evaluation Measures

Training data. Although ML is now widely used to assist with numerous medical tasks, publicly
available datasets are limited. To train the proposed method we require datasets containing patient
cases, consisting of reports of symptoms and associated diagnoses. The MIMIC-III [12] and the
TREC Medical Records [26] datasets both contain patient records and associated diagnoses. How-
ever, MIMIC III data contains little information about symptoms, and the diagnosis codes (in ICD)
do change over time during the patient encounter (no discharge diagnosis is recorded). MIMIC III
also presents a strong bias in that the records relate to intensive care unit hospitalisations only. The
TREC Medical Records dataset contains descriptions of complaints and symptoms for each patient
encounter along with diagnoses (also at discharge); however it is not any more publicly available.
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Previous work by Xia et al. [27] has shown that the abstracts from biomedical literature articles
contain descriptions of diseases and associated key symptoms can be used for disease diagnosis.
Motivated by this observation, we then constructed training instances from medical literature ab-
stracts, following a similar procedure to that used by Xia et al. [27]. Specifically, we acquired
biomedical abstracts annotated with UMLS concepts, made available from Medline 20194. Then,
we only selected articles associated with diseases and symptoms. Finally, we generated several cases
from each abstract using the occurring symptoms as the description of patients and each occurring
diseases as the possible diagnoses.

Test collection. To test the effectiveness of automated diagnosis methods, we constructed a test
collection using the free-text vignettes from a previous work that evaluated the correctness of
symptom checkers [21]. These vignettes were sourced from clinical notes and text-book cases; each
vignette contains a brief free-text description of the patient, a diagnosis made by a clinician, and
a triage urgency (three levels: emergent care is required, non-emergent care is reasonable, and self
care is sufficient).

In our collection, a test instance was constructed using a vignette by extracting symptom con-
cepts from the patient’s free-text description and mapping the free-text of the correct diagnosis
provided for the patient case to a disease concept, using QuickUMLS [22], a tool that performs un-
supervised biomedical concept extraction from free-text. When assembling our collection, we had
to exclude two of the vignettes from the original dataset by Semigran et al. [21] as the free-text
associated with the correct diagnosis could not be mapped to any disease concept by QuickUMLS.
In total, 43 test instances were obtained for evaluation.

Limitation of experiments. Our experimental findings are limited by the following factors: 1)
the used test collection is small – this aspect makes it less likely experiments will detect statistical
significant differences between methods 2) clinical notes are not available as training data and thus
there may be a mismatch between training and test data, 3) the public medical KG we are using is
noisy.

Evaluation metrics. For each vignette, the ground truth contains only one correct diagnosis. In
addition, when considering the medical diagnosis task, it is likely that end-users may be wanted
only to consider a handful of diagnoses: the cognitive load of considering a large array of diagnoses
would render a clinical decision support application for diagnosis recommendation not worth it.
These characteristics are akin to the problem of known-item retrieval, with a strong preference on
early rank retrieval, if not even a dismissal of results above a certain rank cut-off. With this in
mind, we select hit@k (with k = 1, . . . , 5) as evaluation metrics for our experiments – hit@k = 1
if the correct diagnosis is ranked among the top k results, 0 otherwise. We also include nDCG@k
in our evaluation. While we do not have graded relevance in our task at the moment, this may
be introduced in the future if approximate matching of ground truth diagnosis was added. For
example, a diagnosis may be considered as partially correct if it is a specification or generalisation
of the ground truth diagnosis (e.g., tension headache vs. headache). Nevertheless, nDCG@k, unlike
hit@k, does assign a discount to the rank position at which the correct diagnosis is retrieved, and
thus it rewords methods that retrieve the correct diagnosis early in the ranking.

4.2 Baselines
To contextualise the effectiveness of the proposed method, we implemented a number of baseline
systems for the disease diagnosis task. Näıve Bayes Classifier (NB) [27] and Multiple Layer Per-

4 https://mbr.nlm.nih.gov/Download/MetaMapped Medline/2019/MMO/
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ceptron (MLP) [24] are two simple baselines commonly used for the disease prediction task. NB
assumes all medical concepts are independent of each other, while MLP, as a multi-class classi-
fication model, assumes the disease concepts are independent. Deep Structured Semantic Models
(DSSM) [11] is a representative neural matching model, which represents medical concepts as vec-
tors, and then, similar to our method, matches a group of symptoms (associated to a patient)
with disease concepts to obtain an overall similarity score, which is then used to rank diagnoses.
ContextCare treats diagnosis ranking as a link prediction problem, similarly to what we do, but
models the diagnosis pattern with an energy function, a popular method for link prediction task.
The Graph-based Attention Model (GRAM) [5] and LSTM-KGAtt [28] address the task of risk
prediction, e.g., mortality risk prediction, using time series data regarding the progression of the
patient picture. We adapt these methods to the diagnosis prediction (ranking) task considered in
this paper. GRAM obtains representations of medical concepts by combining their hierarchy infor-
mation (ancestors) within their representations. LSTM-KGAtt incorporates the direct context of
medical concepts in KG into the diagnosis process using the attention mechanism.

4.3 Parameter Settings

The GCN was implemented using Python 3.7, PyTorch 1.3.1 and DGL 0.4.3 (https://docs.dgl.
ai/). The hyper-parameters were selected using the following strategies. The dimension of concept
embeddings and node features in the graph share a single value. The number of hidden layers
and the unit numbers of hidden layers in the two MLP modules are set to the same value. The
hyper-parameters were optimised using grid-search and 5-fold cross-validation. The number of GCN
layers was chosen from {1, 2, 3, 4, 5}, the dimension of features was selected from {100, 200, 400},
the number of MLP hidden layers was tuned in {0, 1, 2}, the unit number of MLP hidden layers was
tuned amongst {100, 200, 400}, the dropout rate was chosen from {0.0, 0.1, 0.3, 0.5}. The learning
rate was set as 1e−3 and reduces when the validation loss stops decreasing. The number of negative
samples for matching was set to 1000 and the kaiming initializer was used to initialize the model
parameters.

5 Results and Analysis

With our empirical experiments, we aimed to answer the following research questions related to the
proposed KGCN method:

RQ1: Does our KGCN method outperform the baselines?
RQ2: How does our KGCN method perform with respect to the level of urgency of the patient

case (triaging)?
RQ3: How does relationship type affect the effectiveness of our KGCN method?
RQ4: How does the fusion function affect the effectiveness of our KGCN method?
RQ5: How does the number of GCN layers affect the effectiveness of our KGCN method?

5.1 RQ1: Overall effectiveness

Table 1 reports the overall effectiveness of each method. Note that none of the differences are
statistically significant (paired t-test, alpha = 0.05); this is likely due to the limited number of
vignettes and to all methods not identifying a correct diagnosis for a subset of cases (self-care
vignettes, see Section 5.2) and thus obtaining the same evaluation scores in these cases.

https://docs.dgl.ai/
https://docs.dgl.ai/
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Table 1: Overall effectiveness of methods for diagnosis rannking. The proposed KGCN achieved
the best effectiveness across all metrics.

Hit@1 Hit@2 Hit@3 Hit@4 Hit@5 NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

NB 0.1473 0.2093 0.2171 0.2171 0.2171 0.1473 0.1864 0.1903 0.1903 0.1903

MLP 0.1550 0.1860 0.2171 0.2248 0.2481 0.1550 0.1746 0.1901 0.1934 0.2024

DSSM 0.1550 0.1860 0.2171 0.2326 0.2326 0.1550 0.1746 0.1901 0.1968 0.1968

CtxCare 0.0775 0.1163 0.1318 0.1473 0.1628 0.0775 0.1020 0.1097 0.1164 0.1224

LSTM-KGAtt 0.0775 0.1473 0.1705 0.2093 0.2326 0.0775 0.1215 0.1332 0.1499 0.1589

GRAM 0.1550 0.2016 0.2326 0.2481 0.2636 0.1550 0.1844 0.1999 0.2066 0.2126

KGCN 0.1783 0.2248 0.2403 0.2558 0.2636 0.1783 0.2076 0.2154 0.2221 0.2251

(a) Emergent care is required. (b) Non-emergent care is reasonable. (c) Self care is sufficient.

Fig. 3: Effectiveness with respect to level of urgency. Note that all methods cannot find a correct
diagnosis among the top 5 ranks for any of the self-care scenarios, apart from our KGCN, which
does retrieve the correct diagnosis for a handful of self-care vignettes.

NB and MLP, which are representative traditional methods for disease diagnosis, provided quite
good effectiveness, especially when compared with more complex methods.

DSSM obtained similar performance to MLP, suggesting that formulating disease diagnosis as a
matching problem does not effect effectiveness, while though offering greater flexibility in the way
external knowledge can be incorporated.

ContextCare obtained the worst result: this highlights the limitation of the energy function in
the diagnosis ranking task.

LSTM-KGAtt also performed poorly, although this method relied on the medical KG and thus
exploits medical knowledge. This may be because the underlying LSTM architecture is not suitable
for this task, even though it is widely adopted for tasks such as disease progression task.

GRAM provided improvements over NB, MLP and DSSM. This is done by exploiting the hi-
erarchy information associated with medical concepts; a characteristic that simpler deep learning
methods like MLP and DSSM do not model.

Finally, our model achieved the highest effectiveness across all metrics. Compared with MLP, our
method is more flexible in that it exploits relationships between medical concepts. When compared
with DSSM, we observe that our model does make effective use of the KG. Unlike GRAM, which
only models hierarchy relationships, our method can model different types of knowledge in the
medical KG: the empirical comparison with GRAM shows this is an important factor.
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Fig. 4: Effect of Medi-
cal Knowledge.

Fig. 5: Effect of fusion
functions.

Fig. 6: Effect of the
number of GCN layers.

Fig. 7: Correlation be-
tween effectiveness and
training data size.

5.2 RQ2: Effectiveness with respect to the level of urgency (triaging)

We further analyse the empirical results by considering the level of urgency (triaging) of each patient
case. The results of our analysis are shown in Fig. 3 and suggest that KGCN outperforms other
methods across all urgency levels. It also highlights how the effectiveness of the diagnosis ranking
methods largely varies across the different levels of urgency, regardless of the actual method used.
In particular, we find that all methods performed poorly for patient cases that required self-care,
while they did perform well for the emergent and non-emergent care cases (vignettes).

We further analysed the results to understand why this may have been the case. In particular,
we considered the number of occurrences of the target disease concepts used by the ground truth
diagnoses in the vignettes. Specifically, we studied whether the effectiveness of KGCN was correlated
with the number of such disease concepts in the data used for training (the analysis provided similar
results for the other methods). Results are reported in Fig.7 and suggest that the more a target
disease concepts occurred in the training data, the better the KGCN performed on the associated
patient case (vignette). We further analysed these results with respect to the level of urgency
associated with each vignette. Diseases that require self-care were typically rare in the training
data and indeed KGCN performed poorly on this type of patient cases. Conversely, diseases that
require emergent and non-emergent care occurred more frequently in the training data, and our
KGCN obtained higher effectiveness on these types of cases.

5.3 RQ3: Effect of relationship type

To explore the effect of the type of relationships (edges) present in a medical KG, we execute the
proposed KGCN method on medical KGs populated with different combinations of relationship
types. Our experiments considered three relationship types: isa, present in and causes. The results
of this comparison are reported in Fig. 4. When only present in was used, our method performed
worst. When adding to this relationships either isa or causes, effectiveness increased. This suggests
that both hierarchy information and causality are helpful relationships for medical diagnosis. The
best effectiveness is however achieved when all relationships are considered (present in+isa+causes):
this is likely because hierarchy and causality provide complementary information.

5.4 RQ4: Effect of fusion function

A key component of the proposed KGCN is the fusion of knowledge of different orders. To do so,
our method relies on GRU as the fusion function, although we have indicated how other two widely
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used fusion functions, SumFus and ConcatFus, can also be used. In the next set of experiments, we
compared the effectiveness of GRU compared to the two alternatives.

Empirical results related to this comparison are shown in Fig. 5. According to the results, the
GRU substantially outperformed SunFus and ConcatFus, with the latter being the worst-performing
fusion function amongst the three considered. performs the worst.

These results may be due to the fact that the architecture design of the GRU allows the param-
eters in low layers to be optimized better than when using the two alternative fusion functions. This
caters to the fact that, for medical diagnosis, low-order information is more preferable than high-
order knowledge. For example, if a clinician could have diagnosed a case simply by the symptoms,
without considering the relationships between symptoms and conditions, they would not require
the complex reasoning that underpins medical diagnosis. Another explanation for these results may
be that the GRU fuses the representation of the input node and the aggregated context using their
content interaction, while SunFus and ConcatFus can only combine them linearly. This advantage
renders the model able to fuse these variables according to their contents. For instance, if the
medical concepts do not have good representations, more medical knowledge would be needed.

5.5 RQ5: Effect of number of GCN layers

Finally, we analyzed the effect of the number of GCN layers in KGCN, while keeping the other
hyper-parameters fixed. Overall, the KGCN method performs best when using two GCN layers, as
shown in Fig. 6, while more GCN layers led to a decrease in diagnosis effectiveness. These results
can be explained by that it is beneficial to aggregate more broad context to the representations
of medical concepts and the patient in the disease diagnosis process. When the number of GCN
layers is 3 or more, however, more noise is introduced; in addition, a model with more layers makes
optimization more challenging.

6 Conclusions

In this paper we proposed a Knowledge Graph Convolutional Networks model, named KGCN, for
ranking diagnosis. This method exploits medical KGs, which contain rich relations between medical
concepts, in a more effective and general way compared with existing approaches. We formulated
the disease diagnosis as a matching problem instead of a classification problem (as done in most of
the previous work). To aggregate the medical knowledge for each concept in the KG and surface
it with respect to the patient case at hand (patient node in the diagnosis graph), we exploited the
message-passing mechanism of GCN to learn comprehensive concept representations. By stacking
GCN layers, our model can propagate multi-hop contexts to each node.

Experiments were executed to assess the effectiveness of KGCN and tease out the aspects that
influence its effectiveness. Our method outperformed existing approaches and we showed that both
hierarchy and causality relationships provide complementary, valuable information for the diagnosis
ranking task. We also compared different fusion functions in the context of KGCN, showing that
the GRU fusion function outperformed the alternatives, and investigated the effect of the number
of GCN layers and the availability of training data regarding the target ground-truth diagnosis had
on effectiveness.

Our future work will consider two directions: (1) acquire more patient vignettes for evaluation,
also including partial matches between diagnoses; (2) design special message-passing mechanisms
within the GCN architecture for disease diagnosis. For example, we will explore a message-passing
model with multiple channels to maintain the transitivity of hierarchy and causality relationships.
Along this line, we will also consider exploiting a wider array of relationships.
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